OCR Physical Education
AS / A-Level Skill Acquisition
PowerPoint Summaries

This resource has been written by John Ireland for PEfocus and has been designed to support teaching and learning of the ‘new’ OCR AS and GCE/A-Level PE specification for teaching from September 2016.

All content mirrors the OCR Skill Acquisition specification perfectly.

The resource comprises:
- Approx 40 full colour / fully animated teacher slides
- Student slides as PDFs – with gaps to fill
- Teacher slides as PDFs – with ‘answers’

This resource can be used to present new work, for summing up topic areas and for consolidation at the end of the course.

We really hope that you and your learners will find it both engaging and helpful.
The aim is for students to build their own bank of Skill Acquisition knowledge that can be used throughout the course as well as at the end for review.

A favoured layout is to print two slides per A3 sheet; this appeals to students who often find the large visual style manageable, engaging and valuable as a supplement to their other notes and resources.

Sets of these student slides (PDFs) can be given to students as they start a topic area. They can work on the set slide by slide as each element of work is completed (e.g. Newton’s Laws); or as a whole topic area once it has been ‘covered’. This can be done in class or as a homework / private study task.

Student slides can be posted on secure areas of centres’ intranet/moodle platforms for easy access and further assimilation.

It is highly recommended that students check the accuracy of their work/completed worksheets against a printed copy of the teacher slides. (NB – agreed Terms and Conditions limit access to the full colour animated PowerPoint slides to staff only)
Part practice

- **Skill broken into subroutines**
 - Then, subroutines practiced separately
 - Then, subroutines put together

Uses...
- Good for closed skills and those of low organisation e.g. tennis serve or clean and jerk
- Good at cognitive stage
- Helps understanding
- Gives early success
- Raises confidence & motivation
- Limits information to process
- Safer for learning dangerous skills

but...
- Not suitable for skills of high organisation e.g. sprinting
- Limits awareness of whole skill
- Limits kinaesthetic development
- Transfer to whole skill may be difficult
- Can be de-motivating for high ability learners
- Takes time

Whole practice

Not broken into subroutines
- Skill learned in its complete form
- Movement attempted holistically

Uses...
- Good for high organisation, continuous and simple skills e.g. sprinting or cycling
- Gives holistic view of skill
- Saves time
- Good for high ability learners or those at the autonomous stage
- Creates mental picture
- Encourages fluency

but...
- Unsuitable for complex skills e.g. triple jump
- Difficult for low abilities and those at the cognitive stage of learning
- Too fast for some learners
- Can be de-motivating if failure experienced
Part practice

Skill broken into subroutines
Then, subroutines practiced separately
Then, subroutines put together

<table>
<thead>
<tr>
<th>Uses...</th>
<th>But...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good for _______ skills and those of _______ organisation e.g. tennis serve or clean and jerk</td>
<td>Not suitable for skills of _______ organisation e.g. sprinting</td>
</tr>
<tr>
<td>Good at _______ stage of learning</td>
<td>Limits awareness of _______ skill</td>
</tr>
<tr>
<td>Helps understanding</td>
<td>Limits _______ development</td>
</tr>
<tr>
<td>Gives early success</td>
<td>Transfer to _______ skill may be difficult</td>
</tr>
<tr>
<td>Raises confidence & motivation</td>
<td>Can be _______ for high ability learners</td>
</tr>
<tr>
<td>Limits information to process</td>
<td>Takes time</td>
</tr>
<tr>
<td>Safer for learning _______ skills</td>
<td></td>
</tr>
</tbody>
</table>

Whole practice

Not broken into subroutines
Skill learned in its complete form
Movement attempted holistically

<table>
<thead>
<tr>
<th>Uses...</th>
<th>But...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good for high _______ , continuous and _______ skills e.g. sprinting or cycling</td>
<td>Unsuitable for complex skills e.g. triple jump</td>
</tr>
<tr>
<td>Gives holistic view of skill</td>
<td>Difficult for low abilities and those at the _______ stage of learning</td>
</tr>
<tr>
<td>Saves _______</td>
<td>Too fast for some learners</td>
</tr>
<tr>
<td>Good for high ability learners or those at the _______ stage</td>
<td>Can be _______ if failure experienced</td>
</tr>
<tr>
<td>Creates mental picture</td>
<td></td>
</tr>
<tr>
<td>Encourages fluency</td>
<td></td>
</tr>
</tbody>
</table>
Massed practice

Practice is repetitive and continuous

- **No rest intervals**
- **E.g.** repetitive and continuous driving in golf or set shots in basketball

Uses...
- Ideal for discrete skills e.g. golf drive or basketball set shot
- Good for simple or short duration skills e.g. netball shooting
- Good at the autonomous phase
- Good for experienced or older or more motivated performers
- Helps to groove or overlearn the skill
- Helps to form S-R bonds, develop kinesthesis and schema

But...
- Can be too exhausting and/or boring
- Could cause drive reduction or mental fatigue
- Errors could increase due to the repetitive and continuous nature of practice
- Can lead to overuse injuries

But...
- Time for rest, mental rehearsal, reinforcement & feedback
- Helps to form S-R bonds, develop kinesthesis and schema

Distributed practice

Practice is in short bursts

- **Regular rest intervals**
- **E.g.** sprinting or swimming

Uses...
- Ideal for high energy continuous skills e.g. sprinting or swimming
- Good for complex and dangerous skills e.g. trampolining
- Good at the cognitive stage or for less fit performers
- Helps understanding at the associative & autonomous stages

But...
- Rest intervals may disjoint the practice, causing learning to be hindered
- Can be hard to regain intensity of practice or concentration after a break
- Long or frequent breaks can be demotivating
Types and methods of practice - characteristics and uses of each.

Massed practice
Practice is repetitive and continuous
No rest intervals
E.g. repetitive and continuous driving in golf or set shots in basketball

<table>
<thead>
<tr>
<th>Uses...</th>
<th>But...</th>
<th>Uses...</th>
<th>But...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal for discrete skills e.g. golf drive or basketball set shot</td>
<td>Can be too __________ and/or boring</td>
<td>Ideal for high energy continuous skills e.g. __________ or swimming</td>
<td>Rest intervals may disjoint the practice, causing learning to be hindered</td>
</tr>
<tr>
<td>Good for simple or short duration skills e.g. netball shooting</td>
<td>Could cause drive reduction or mental ________</td>
<td>Good for complex and ________ skills e.g. trampolining</td>
<td>Can be hard to regain intensity of practice or __________ after a break</td>
</tr>
<tr>
<td>Good at the __________phase</td>
<td>Errors could increase due to the repetitive and continuous nature of practice</td>
<td>Good at the ________ stage or for less fit performers</td>
<td>Helps understanding at the associative & ________ stages</td>
</tr>
<tr>
<td>Good for experienced or older or more ________performers</td>
<td>Helps to groove or __________the skill</td>
<td>Helps to form S-R bonds, develop kinesthesis and ________</td>
<td>Long or frequent breaks can be demotivating</td>
</tr>
<tr>
<td>Helps to form ________kinesthesis and schema</td>
<td>Can lead to chronic or ________injuries</td>
<td>Time for ________, mental rehearsal, reinforcement & ________</td>
<td></td>
</tr>
</tbody>
</table>

Distributed practice
Practice is in short bursts
Regular rest intervals
E.g. sprinting or swimming

Uses...
But...
Cognitive Learning Theory

Cognitive learning theory involves:

- The coach giving the learner the whole problem to solve
- The Gestalt approach to learning; or considering the problem as a whole (not in parts)
- Optimising learning through thinking
- Perception or intelligence
- Intervening variables... this means... drawing together the different aspects of the problem
- Using past experiences to solve the problem
- Insight or intuitive learning

Practical Examples

Practical examples of how cognitive theory helps the learning of movement skills include:

- The dancer needs to think about the situation before working out how to perform the movement.
- By considering factors such as theme and rhythm, the dancer would produce an effective solution.
- Working out an effective solution adds to the dancer’s experience.
- The dancer understands how to interpret the music and spirit of the dance.
- A judo player would consider the opponent’s preferred speed, skill, and throws before deciding on strategy.
- Movements from previous judo matches may be transferred to help the learning of new movements.
- Both the dancer and the judo player would understand what needs to be done to solve their respective problems.
Cognitive learning theory involves

Practical examples of how cognitive theory helps the learning of movement skill include....

The coach giving the learner the _______ problem to _______	the dancer needs to think about the situation before working out how to perform the movement
the Gestalt approach to learning; or considering the problem as a _______ (not in _______)	by considering factors such as theme and rhythm, the dancer would produce an effective solution
optimising learning through thinking	working out an effective solution adds to the dancer’s
________ or intelligence	the dancer understands how to interpret the music and spirit of the dance
_______ variables ... this means... drawing together the different aspects of the _______	a judo player would consider the opponent’s preferred speed, skill and throws before deciding on strategy
using past _________ to _______ the problem	movements from previous judo matches may be _________ to help the learning of new movement
________ or intuitive learning	both the dancer and the judo player would _________ what needs to be done to _________ their respective _________
6.1 Types and uses of guidance

Visual guidance

The learner watches a model to form a mental image

A demonstration, and also ...

...pictures, charts. DVDs, boxes or guidance lines

E.g. demonstration of a pass in rugby

Verbal guidance

The learner is told what to do

Spoken instruction

Good for feedback

E.g. telling the player which tactics to use

Manual guidance

The learner is given physical support by the teacher

Moving the joints or limbs through the movement

Manipulating the learner’s body to try to develop kinesthesis

E.g. physical support during a forehand shot in tennis

Mechanical guidance

The learner uses equipment or apparatus to help performance

Supporting the body through the movement using apparatus to develop confidence

E.g. using a harness in trampolining
6.1 Types and uses of guidance

Visual guidance

The learner watches a model to form a __________ image

Often a ____________, but could also be...

...pictures, charts. DVDs, boxes or guidance lines

E.g. __________________________

Verbal guidance

The learner is told what to do

Spoken instruction

Good for ________________

E.g. __________________________

Manual guidance

The learner is given ____________ support by the teacher

Moving the joints or ________through the movement

Manipulating the learner’s body to try to develop

E.g. __________________________

Mechanical guidance

The learner uses equipment or apparatus to help performance

Supporting the body through the movement using apparatus to develop ______________

E.g. __________________________
Craik and Lockhart’s level of processing model

Learning and performing physical activity skills

Deep processing = longer lasting memories

Recognising and understanding the meaning of stimuli

Deep Processing from Elaborative rehearsal

Shallow Processing from Maintenance rehearsal

Recognising physical / sensory features of a stimulus – seeing shapes / hearing sounds

Shallow processing = shorter lasting memories
Learning and performing physical activity skills

Deep processing = longer lasting memories

Recognising _________ or sensory features of a stimulus – seeing ________ / hearing ________

Processing = shorter lasting _________ processing

Elaborative rehearsal

Maintenance rehearsal

GCE/A level only